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Abstract

In the ergodic regime, several methods efficiently estimate the temporal scaling of time series characterized by long-
range power-law correlations by converting them into diffusion processes. However, in the condition of ergodicity
breakdown, the same methods give ambiguous results. We show that in such regime, two different scaling behaviors
emerge depending on the age of the windows used for the estimation. We explain the ambiguity of the estimation meth-
ods by the different influence of the two scaling behaviors on each method. Our results suggest that aging drastically
alters the scaling properties of non-ergodic processes.
� 2007 Elsevier Ltd. All rights reserved.
1. Introduction

A very popular way to analyze time series rests on the Brownian motion (BM) paradigm. A time series {ni} is a
sequence of values depending on the subscript i, which is interpreted as a form of discrete time, ranging from i = 1
to i ¼ L, where L is a very large integer value. If L is very large, we can adopt the continuous time representation
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* Co
E-m
xðtÞ ¼
Z t

0

nðt0Þ dt0; ð1Þ
with t being an integer number fulfilling the condition:
1� t� L: ð2Þ
This means that the time series {ni} is thought of as being an one-dimensional diffusion generating fluctuation. When
the BM condition applies, the fluctuation is random and has a finite variance. As a consequence, the width of the cor-
responding probability distribution density (pdf), pðx; tÞ, with x denoting the diffusion coordinate, increases as the
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square root of time. A plausible conjecture for the time series generated by a complex system, of whatever nature, bio-
logical, sociological or geological, is that the time series depart significantly from this condition, insofar as they reflect
the long-range cooperation among the constituents of the system under study. As a consequence, if these time series are
adopted to generate diffusion, a significant departure from the Brownian motion diffusion would ensue.

A special attention is devoted to determining the asymptotic scaling of this diffusion process, which is defined by
pðx; tÞ ¼ 1

tdth
Q

x
tdth

� �
; ð3Þ
with dth usually termed scaling coefficient, or scaling (the suffix ‘th’ stands for theoric to distinguish it from the scaling
estimates d that will be introduced shortly). The BM condition is represented by dth ¼ 1=2 and QðyÞ equal to a gaussian
function of the argument y. In the literature a special attention is therefore being devoted to estimating the scaling dth.
The most popular estimation methods based on diffusion are the standard deviation analysis (SDA) [3], the diffusion
entropy analysis (DEA) [2] and the detrended fluctuation analysis (DFA) [1].

The SDA [3] rests on
D2ðlÞ � hðDxðlÞ � hDxðlÞil0
Þ2il0

; ð4Þ
where l0 is the initial point of the walk, the l0 subscript on the bracket means an average on the initial position of the
mobile window of size l and
DxðlÞ � xðl0 þ lÞ � xðl0Þ: ð5Þ
The initial position l0 of the mobile windows of size l moves one step a time from +0 to L� l, so as to create as many
Gibbs systems as possible using a single sequence. If fluctuations {ni} are not random but exhibit long-range power-law
correlations, DðlÞ scales as
lim
l!1

DðlÞ / ld; ð6Þ
where in the ergodic regime, 0:5 < d < 1, and the relation between d and dth generally depends on the nature of the
underlying process [4]. The mobile window method used for the SDA is shared by the DEA. As in the case of SDA,
the windows of the same length serve the purpose of creating diffusion trajectories moving from the origin at l = 0
and spreading with the increase of l. Rather than evaluating the standard deviation of this diffusion process, the
DEA evaluates the entropy of the resulting distribution of walkers, usually the Shannon entropy, SðlÞ, thereby making
the result independent of linear biases, with no need of adopting a preliminary de-trending, and directly estimating the
scaling dth through the important property [2]
SðlÞ ¼ Aþ d logðlÞ; ð7Þ
where A is a constant depending on the function QðyÞ of Eq. (3).
DFA technique [1] operates as follows. First of all the trajectory xðtÞ of Eq. (1) is evaluated, with t ranging from t = 0

to t ¼ L. The single sequence, of length L, is divided into N � L=l non-overlapping windows. Thus the window label is
given by l0 ¼ ml with m ranging from +0 to N � 1. Within every window a linear fit xlinðtÞ to xðtÞ is computed: The
quantity ðxðtÞ � xlinðtÞÞ2 fluctuates as t moves from t ¼ l0 to t ¼ l0 þ l. The DFA measure is the mean value of these
fluctuations. Finally, this measure is averaged over all l0, yielding the square root mean residual of the fluctuations
F ðlÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

l

Xl0þl

l0

ðxðtÞ � xlinðtÞÞ2
* +

l0

vuut ; ð8Þ
which is expected to hold:
lim
l!1

F ðlÞ / ld: ð9Þ
with the same scaling d given by the SDA (Eq. (6)) [1,6].
All three methods address the same main difficult problem and solve it in the same way. The problem to solve is the

following. Statistical physics rests on the use of the Gibbs ensemble method, an important requirement that the time
series analysis cannot meet. A single time series represents the time evolution of a single system, and in the case of phys-
iological, geophysical and sociological processes, the Gibbs ensemble concept is an ideal condition that cannot be real-
ized in practice, not even approximately. Each complex systems is unique, and an average on many identical systems
cannot be done. Thus all three methods rest on the implicit assumption that the time series represents the time evolution
of a system, whose complex rules do not change with time. Special refinements are necessary to cope with the difficult
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case of changing with time rules [5]. In this article, we make the assumption that the rules driving the system’s time
evolution do not change with time. Thus, in principle, we might safely use the solution adopted by all three methods
to bypass the problem caused by the lack a Gibbs ensemble. This is, in fact, the adoption of moving windows which
rests on the tacit assumption of ergodicity.

The recent work of Refs. [7–9] shows that many physical systems generate time series that are not ergodic, even if the
rules driving their dynamics do not change with time. Moreover, several biological time series exhibit a non-ergodic
behavior [10–12], and the estimation of the temporal scaling is not supported by a clear theory as in the ergodic case.

In this paper, we plan to discuss the consequences that these non-ergodic properties have on the results of the SDA,
DEA and DFA analysis. The common adoption of the moving window method is supplemented by different prescrip-
tions, the detrending with DFA, and no detrending whatsoever with DEA. We plan to show that the ergodicity break-
down causes these different prescriptions to produce different scalings. To make this discussion easier we create a time
series that has been widely studied in the past as a source of super-diffusion [4,13–15]. Following the authors of Ref. [13]
we call this model velocity model. In the earlier work the statistical analysis of this time series has been done in a sta-
tionary condition generating Lévy walk [4,15]. Here we use the velocity model in the non-ergodic condition, where the
scaling is age dependent.

We begin by showing with numerical simulations on single time series generated by the velocity model that SDA,
DEA and DFA give ambiguous results in the non-ergodic regime. In the literature there already exist prescriptions
to determine the scaling dependence on aging, thereby yielding a variety of scalings, ranging from the infinitely aged
to the brand new condition. See, for instance, Refs. [16,17] for a recent discussion on the Gibbs approach to aging
and aging dependent scaling. Assuming a Gibbs approach, we derive analytically and numerically the two scalings cor-
responding to the infinitely aged and the brand new condition of the velocity model in the non-ergodic regime. We show
that, when analysing single sequences, the SDA is insensitive to the aged scaling predicted by the ordinary Gibbs ensem-
ble method, while such scaling is predominant in the DFA. We show that the DEA does not afford a neat scaling, but
only a slow transition to an undefined time asymptotic scaling that probably corresponds to the Gibbs aged condition.
2. Generation and scaling analysis of non-ergodic time series

It is easy to show [18] that the transformation
s ¼ T
1

y
1

l�1

� 1

 !
; ð10Þ
with l > 1, has the effect of turning the sequence {yi} of random numbers uniformly distributed in the interval ½0; 1� into
the sequence {si} with the probability density wðsÞ given by
wðsÞ ¼ ðl� 1Þ T l�1

ðsþ T Þl : ð11Þ
We use this prescription to generate the time sequence {ti} defined by
ti ¼ si; ð12Þ
if i = 1, and by
tiþ1 ¼ si þ ti; ð13Þ
if i > 1.
We are now in a position to define the velocity model of Ref. [13], which is a prescription to derive the time series

{n}, with the following rule: The modulus of the fluctuation nðtÞ is constant (and set for simplicity equal to +1). At the
time ti we toss a coin to establish the sign of the velocity for the whole interval ti 6 t < tiþ1.

Note that the mean time hsi is given by
hsi ¼ T
l� 2

: ð14Þ
When l < 2, the mean value hsi diverges and the time series {ti} is not ergodic [8,9]. The authors of Ref. [4] applied the
DEA to the case 2hli3 and found that the DEA reveals the Lévy walk scaling
d ¼ 1

ðl� 1Þ ; ð15Þ
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whereas the SDA, based on the long-time limit of the second moment,
Fig. 1
biloga
hx2ðtÞi / t2d; ð16Þ
yields
d ¼ 4� l
2

: ð17Þ
The authors of Ref. [15] pointed out that the pdf pðx; tÞ is a truncated Lévy distribution. If we ignore this truncation, the
scaling d of Eq. (15) is the proper scaling of Eq. (3). This Lévy distribution is truncated by two symmetric ballistic peaks
whose scaling is d = 1. As a consequence this dynamic process is biscaling and SDA scaling is a compromise between
the Lévy scaling of Eq. (15) and the faster peak ballistic scaling. Using these arguments the authors of Ref. [19] proved,
by using DEA and SDA, that the model illustrated in this section is the proper representation of DNA sequences, there-
by supporting the earlier work of [20].

No one of these earlier papers explored the non-ergodic region l < 2. It is only known, on the basis of theoretical
arguments [13] that in this case the ballistic scaling
d ¼ 1 ð18Þ
should apply.
Here we explore the transition from the ergodic to non-ergodic condition by means of SDA (Fig. 1), DEA (Fig. 2)

and DFA (Fig. 3), using 5 different values of l across the transition: l ¼ 1:6, 1.8, 2.0, 2.2 and 2.4. We generated for each
value of l a single artificial sequence of length L ¼ 106, and we assigned to T in Eq. (10) the value T ¼ 0:5. For every
sequence, we checked that the distribution density of Eq. (11) had the asymptotic power-law behavior predicted theo-
retically. SDA and DEA were computed by following the prescriptions described in the Introduction, i.e. with overlap-
ping windows whose initial position are shifted one step at a time. DFA was computed with windows overlapping for
half of their length. We checked with further simulations that the portion of window overlapping does not affect the
DFA estimate; the half-window overlap was preferred to the almost complete overlap used for SDA and DEA to speed
up computations.

For l P 2, this simulation confirms the well-known scaling d ¼ ð4� lÞ=2, Eq. (17), for SDA and DFA, and
d ¼ 1=ðl� 1Þ, Eq. (13) for DEA. For l 6 2, three distinct behaviors emerge. As expected from [3,13], the SDA slope
in log–log scale saturates to 1 (Figs. 1 and 4). The results produced by the DEA remain ambiguous since no clear scaling
appears for time windows shorter than t ’ 15; 000 (Figs. 2 and 4).

It is remarkable that the DFA method does not perceive the transition from the ergodic to the non-ergodic condi-
tion, and obeys the prescription d ¼ ð4� lÞ=2 throughout Figs. 3 and 4. As a consequence, in the non-ergodic regime,
the scaling emerging from the DFA exceeds the ballistic scaling d = 1. At first sight, this seems to be unphysical insofar
as the walkers of velocity model move with constant velocity and consequently travel distances proportional to t. We
shall see that this is a consequence of the ergodicity breakdown.
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3. Renewal aging

The time series {ti} used in Section 2 is renewal and non-exponential at the same time. An important property,
directly related to wðtÞ, is the probability that no event occurs during a given time interval t. This quantity, called
WðtÞ, is given by
WðtÞ ¼
Z þ1

t
dt0wðt0Þ: ð19Þ
The choice of Eq. (11) yields
WðtÞ ¼ T
t þ T

� �l�1

; ð20Þ
namely, a rate of event occurrence changing with time, thereby producing aging effects [16,21]. The functions wðtÞ and
WðtÞ depend on the time at which observation begins. Let us assume that the time series under study is prepared in such
a way that the first event occurs at t = 0. The probability density of meeting an event at a later time t is given by wðtÞ of
Eq. (11) and the probability that no event occurs up to time t is given by WðtÞ of Eq. (20). If we begin the observation at
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a time t0 > 0, the probability density of meeting an event is not more given by wðtÞ of Eq. (11). Under the only condition
that the time series is renewal, the probability density of meeting an event at time t > t0, given the condition that obser-
vation begins at t 0, denoted as wðt; t0Þ, is given by [16]
wðt; t0Þ ¼
X1
n¼0

Z t0

0

dt00wnðt00Þwðt � t00Þ: ð21Þ
The function wnðtÞ is the probability density that at time t the last of a sequel of n events occurs. Due to the renewal
character of the process wnðtÞ is related to wn�1ðtÞ by
wnðtÞ ¼
Z t

0

dt0wn�1ðt0Þw1ðt � t0Þ; ð22Þ
with
w1ðtÞ � wðtÞ: ð23Þ
A much more practical expression for wðt; t0Þ is given by [16]
wðt; t0Þ ¼
R t0

0 wðt þ yÞ
Kt0

dy; ð24Þ
where Kt0 � Kðt0Þ ¼
R t0

0
Wðt00Þ dt00 is the normalization constant. This expression is derived from Eq. (21) by assuming

that the function
P ðtÞ ¼
X1
n¼0

wnðtÞ ð25Þ
is time independent.
Note that in addition to the delayed waiting time distribution wðt; t0Þ it is convenient to define the corresponding

survival probability
Wðt; t0Þ ¼
Z 1

t
dywðy; t0Þ: ð26Þ
In conclusion, in the non-Poisson case, the explicit form of wðtÞ depends on the time at which observation begins. The
waiting time distribution of Eq. (11) might be denoted as wðt; 0Þ, insofar as it corresponds to beginning the observation
at the time itself at which an event occurs.

To explain how aging may influence scaling, let us review first the CTRW prescription generalized by Zumofen and
Klafter [13] to determine the time evolution of pðx; tÞ when preparation and observation occur at the same time. Accord-
ing to this prescription we have
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pðx; tÞ ¼ Wðx; tÞ þ
X1
n¼1

Z t

0

dt0
Z þ1

�1
dx0wnðx0; t0ÞWðx� x0; t � t0Þ; ð27Þ
where wnðx; tÞ and Wðx; tÞ have the following meaning. wnðx; tÞ is the probability density for the walker to move a dis-
tance x in time t as a result of n events, the last of which makes the walker arrive at x exactly at time t. Due to the
renewal character of the process the function wnðx; tÞ is related to wn�1ðx; tÞ through
wnðx; tÞ ¼
Z t

0

dt0
Z 1

�1
dx0wn�1ðx0; t0Þw1ðx� x0; t � t0Þ: ð28Þ
The function Wðx; tÞ is the probability for the walker to move a distance x with no event occurring up to time t.
The time and space convoluted nature of Eq. (27) makes it convenient to adopt the Fourier–Laplace transform

method. The Fourier–Laplace transform of pðx; tÞ is denoted by the symbol p̂ðk; uÞ, and after a little algebra, and sum-
mation of a geometric series, Eq. (27) becomes
p̂ðk; uÞ ¼ 1

1� ŵðk; uÞ
Ŵðk; uÞ: ð29Þ
The velocity model corresponds to setting
wðx; tÞ ¼ 1

2
½dðx� tÞ þ dðxþ tÞ�wðtÞ; ð30Þ
and
Wðx; tÞ ¼ 1

2
½dðx� tÞ þ dðxþ tÞ�WðtÞ: ð31Þ
With Eq. (30) we select from the distribution density wðtÞ a time t, throughout which the walker moves with constant
velocity, in either the positive or the negative direction, according to a fair coin tossing prescription. Using Eq. (31) we
take into account the motion of the random walkers before completion of the soujourn times in one of the two velocity
states. As earlier pointed out, the scaling d = 1 seems to be the maximum possible scaling. In fact, the authors of Ref.
[13] found the scaling of Eq. (15) for 2 < l < 3 and the scaling of Eq. (18) for 1 < l < 2. This is because they have used
for all jump events the prescription of Eq. (30). This is correct if at t = 0 all the random walkers are found at the begin-
ning of their velocity state. This condition corresponds to making observation and preparation occur at the same time.

To find the scaling dependence on aging, we properly prepare the Gibbs ensemble of time sequences at t = 0, by
assuming that all of them at that time are at the beginning of a velocity state. Then we imagine that the corresponding
walkers are located at x = 0 at a time t0 > 0. Thus, the first event occurrence is described by
wðx; t; t0Þ ¼ 1

2
½dðx� tÞ þ dðxþ tÞ�wðt; t0Þ; ð32Þ
with wðt; t0Þ given by Eq. (21), rather than by Eq. (30). On the same token, Eq. (31) is replaced by
Wðx; t; t0Þ ¼ 1

2
½dðx� tÞ þ dðxþ tÞ�Wðt; t0Þ: ð33Þ
After the first event occurrence, we go back to using the ordinary functions wðtÞ and WðtÞ.
Applying this prescription to Eq. (27), we turn pðx; tÞ into pðx; t; t0Þ, namely a pdf corresponding to preparing the

fluctuation nðtÞ at t = 0 and the random walker leaving the origin x = 0 at time t0 > 0. By evaluating the Laplace trans-
form of Eq. (27) with the first event occurrence described by wðt; t0Þ, by Fourier–Laplace transforming, and summing
the geometric series, we obtain
p̂ðk; u; t0Þ ¼ Ŵðk; u; t0Þ þ 2pŵ1ðk; u; t0ÞŴðk; uÞ 1

1�
ffiffiffiffiffiffi
2p
p

ŵðk; uÞ
: ð34Þ
Note that in the Fourier space
w1ðk; s; t0Þ ¼
1ffiffiffiffiffiffi
2p
p wðs; t0Þ cos½ks�; ð35Þ

wðk; sÞ ¼ 1ffiffiffiffiffiffi
2p
p wðsÞ cos½ks� ð36Þ
and
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Wðk; sÞ ¼ 1ffiffiffiffiffiffi
2p
p cos½ks�

Z þ1

s
wðt0Þ dt0: ð37Þ
Rather than using the variables t and t 0 we deem to be more convenient to adopt the variables t 0 and s � t � t0.
4. Delayed waiting time distribution

This section is devoted to the discussion of the waiting time distribution wðt; t0Þ. According to Section 3, this function
is essential to evaluate pðx; t; t0Þ and thus the dependence of scaling on t 0. Moreover, as we shall see, this delayed waiting
time distribution allows us to determine the scaling corresponding to the condition s� t0.

The exact expression of Eq. (21) is not convenient for a qualitative discussion of the aging process. A simple way to
derive the main properties of wðs; t0Þ is given by Eq. (24), which yields
wðs; t0Þ ’ ða� 1Þ ðsþ T Þ�a � ðsþ T þ t0Þ�a

T 1�a � ðt0 þ T Þ1�a ; ð38Þ
where
a � l� 1: ð39Þ
Let us consider the following two limiting conditions: (a) s� t0 � T ; (b) T � s� t0. With two straightforward Taylor
expansions for 1 < l < 2, we obtain
wðs; t0Þ � ð2� lÞðl� 1Þt0ðl�1Þ

sl
ð40Þ
and
wðs; t0Þ � ð2� lÞt0ðl�2Þ

sl�1
; ð41Þ
respectively. This results allow to derive immediately the scaling corresponding to the conditions (a) and (b). In fact, the
normalized the correlation function of the fluctuation nðtÞ, Unðs; t0Þ is known [17]. Its Laplace transform with respect to
s yields
Ûnðu; t0Þ ¼
1� 2ŵðu;t0 Þ

1þŵðuÞ

u
: ð42Þ
It is straightforward to prove that for u! 0
Ûnðu; t0Þ / Ŵðu; t0Þ: ð43Þ
Thus, conditions (a) and (b) yield for s!1

Unðs; t0Þ / s1�l ð44Þ
and
Unðs; t0Þ / s2�l; ð45Þ
respectively.
On the other hand, the evaluation of the second moment of xðtÞ from Eq. (1) brings for t !1
hx2ðtÞi ¼ hn2i
Z Z

dt0 dsUnðs; t0Þ: ð46Þ
Let us make the conjecture that in this double integral the weight of the condition (b) is predominant. As a consequence
for s!1
d2

dt2
hx2ðtÞi / t2�l: ð47Þ
Thus, in condition (b), the scaling d ¼ ð4� lÞ=2 of the second moment typical of the ergodic regime persists in the non-
ergodic regime. The paradoxical result of DFA of Section 2 is then explained in terms of the predominance of the aged
condition (b).
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However, the arguments that we have used are based on the approximated expression of Eq. (38) that might be inac-
curate in the non-ergodic case l < 2. For this reason we compare Eq. (38) to the exact prediction of Eq. (21). This is
done as follows. We evaluate the Laplace transform of wðs; t0Þ, and we use the symbol s to denote the variable that is the
Laplace conjugate of t 0. We obtain the following exact expression
Fig. 6.
(50) fo
faster.
ŵðs; sÞ ¼ ess

1� ŵðsÞ
ŵðsÞ �

Z s

0

e�sfwðfÞ df

� �
; ð48Þ
where ŵðsÞ ¼ aesT ½sT �aC½�a; sT � is the Laplace transform of Eq. (11) and C½a; z� ¼
Rþ1

z ta�1e�t dt is the incomplete gam-
ma function. The numerical-exact anti-Laplace transformation with respect to variable s is performed according to Tal-
bot algorithm in the programing language Mathematica5.2. The graphical comparison between numerical-exact anti-
Laplace transform with respect to s of Eq. (48) and approximated-analytical form Eq. (38) of wðs; t0Þ is shown in Fig. 5
for l ¼ 1:8 and the agreement between approximated expression and exact prediction is remarkably good. The value of
l adopted for this comparison (l ¼ 1:8) is close to the border l = 2. We expect that the approximated expression be-
comes less accurate as we move towards l ¼ 1. However, the exact expression of Eq. (48) in the limiting conditions
t0 � T and s� T can be inverted analytically. It yields for 0 < a < 1
0 1 2 3 4 5 6 7
τ

0.1

0.2

0.3

0.4

0.5

ψ (τ,t ′)

τ τ+dτ

For illustration purposes it is simply plotted the probability density function (PDF) for the first event times according to Eq.
r T � s� t0 in linear scale. The numerical constants are: l ¼ 1:8; T ¼ 10�3; t0 ¼ 104; 105; 106. Increasing t 0 the curves decay
wðs; t0Þ ds is the probability that the event will occur in the time interval ds if we observe the system at t 0.
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wðs; t0Þ ’ sin½pa�
p

t0a

saðsþ t0Þ : ð49Þ
From this analytical expression it is straightforward to derive
wðs; t0Þ �
t0ðl�1Þ

sl for T � t0 � s;
t0ðl�2Þ

sl�1 for T � s� t0:

(
ð50Þ
By comparison with Eqs. (40) and (41), we see that, although the exact result significantly departs from the approxi-
mated expression of Eq. (24), the scalings of the conditions (a) and (b) are correct. In conclusion, this result offers
an explanation of the paradoxical result of Section 2 about the DFA scaling estimate.

Before concluding this section, we want to shed further light into the aging effect by plotting wðs; t0Þ for increasing
values of t 0. We see from Fig. 6 that the larger t 0 the smaller the probability of event occurrence, and consequently the
longer the sojourn time in one state. The system becomes slower, thereby justifying the term aging to denote this effect.
5. Second moment

We are now ready to evaluate the scaling dðs; t0Þ. This is done defining
z � log s ð51Þ
and setting
dðs; t0Þ ¼ dðez; t0Þjz¼log s ¼ ð1=2Þd½loghx2ðez; t0Þi�
dz

				
z¼log s

: ð52Þ
It is straightforward to prove that
hx̂2ðu; t0Þi ¼ � o
2p̂ðk; u; t0Þ

ok2

				
k¼0

ð53Þ
By using Eqs. (34), (35), (36), (37) and (53) we derive after somewhat lengthy algebra the following simple expression
hx̂2ðu; t0Þi ¼ ŵðu; t0Þ
1� ŵðuÞ

o2

ou2

1� ŵðuÞ
u

þ 1

u
o2ŵðuÞ

ou2

" #
: ð54Þ
At this stage we benefit from the results of Section 4. We use Eq. (49) and the convolution theorem to get, in the limiting
cases s� T and t0 � T
hx2ðs; t0Þi ffi ð1� aÞ sin½pa�
pða2 � 3aþ 2Þ

s
t0

1�a
½t0½ða� 3Þsþ ða� 2Þt0� � ða� 2Þðsþ t0Þ22F 1 1; 1� a; 2� a;� s

t0

� �
�; ð55Þ
where 2F 1 is the hypergeometric function. Finally, using Eq. (52),
dðs; t0Þ ffi
ða� 2Þs½�t0 þ 2F 1ð1; 1� a; 2� a;� s

t0Þðsþ t0Þ�
Aðs; t0Þ þ Bðs; t0Þ ; ð56Þ
where
Aðs; t0Þ � ða� 2Þ2F 1ð1; 1� a; 2� a;� s
t0
Þðsþ t0Þ2 ð57Þ
and
Bðs; t0Þ � t0ð3sþ 2t0 � aðsþ t0ÞÞ: ð58Þ
We illustrate Eq. (56) in Fig. 7. We see that upon increase of t 0 the transition from the scaling of Eq. (17) to the well
known ballistic scaling becomes slower and slower, so as to make it virtually permanent in the case of infinitely large
age. This sheds further light into the action of DFA. Finally, we want to remark that using Eq. (49) we get
hx2ðs; t0Þi ’
C1

2ð1�aÞ
Cð3Þ s2 for s� t0 � T ;

C2
2ð1�aÞ

CðaÞCð4�aÞ
s3�a

t0ð1�aÞ for T � s� t0;

8<
: ð59Þ
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Fig. 7. Plotted the analytical scale dependence on forward time(s) Eq. (56) for four different observation times: t0 ¼ 103; 104; 105; 106;

l ¼ 1:8.
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an important result that proves that in the condition (a) the ballistic scaling applies, and in condition (b), in accordance
with the results of Section 4, the scaling of Eq. (17) holds true. In Eq. (59) C1 and C2 are time independent constants and
CðzÞ is the Euler gamma function.
6. From a single trajectory to diffusion

There is one problem left to solve. This is the explanation of why the SDA reveals only the brand new scaling and is
insensitive to the condition (b). To solve this remaining problem we have to address the important issue of how to turn a
single sequence into a Gibbs ensemble. As mentioned in Section 1, a diffusion trajectory running for a time l is obtained
by locating a window of size l at a given distance from the origin. Let us assume for simplicity that an event occurs at
the origin of the sequence. Then we might be tempted to define the age of the window as the distance from the origin. In
this case for any age we would obtain only one window, and as a consequence we cannot use this criterion.

Also the authors of Ref. [22] addressed the problem of deriving from a single sequence a Gibbs ensemble of age t 0.
Their method rests on setting the observation beginning at a distance t 0 from each event of the sequence under study.
This criterion was proved to be efficient and accurate to assess the renewal nature of the single sequence under study.
Unfortunately, it cannot be applied in the present case. In fact, it would lead to the absurd result that a single window of
length l, to use for the creation of a diffusional trajectory with the same length, would have different ages, because the
events on the left-hand side of this window have different distances from its left border. Therefore we have decided to
define as age of a given diffusion trajectory of length l the distance between its beginning and the closest of the earlier
events. As a consequence of this assumption the distribution density of the first event occurring, at a fixed age t 0, is given
by
wðs; t0Þ ¼ ðl� 1Þ ðt
0 þ T Þl�1

ðsþ t0 þ T Þl : ð60Þ
By repeating the treatment of Section 5 with this definition of wðs; t0Þ, we obtain for the second moment, in the limiting
case s� T , the following result
hx2ðs; t0Þi ffi ðT þ sþ t0Þaþ1 2ðT þ sþ t0Þ2 þ a2s2

2� a
� asð2T þ 3sþ 2t0Þ

2� a

" #
� 2ðT þ t0ÞaðT þ sþ t0Þ3

2� a
: ð61Þ
Of course, in this case the symbol h
 
 
i indicates an average over the windows of the same age t 0.
For the scaling dðs; t0Þ we obtain
dðs; t0Þ ffi ð2� aÞs ðT þ t0ÞaðT þ sþ t0Þ
Cðs; t0Þ � Dðs; t0Þ �

ðT þ sþ t0ÞaðT þ ð1� aÞsþ t0Þ
Cðs; t0Þ � Dðs; t0Þ

� �
; ð62Þ
where



Fig. 8.
l ¼ 1:
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Cðs; t0Þ � 2ðT þ t0ÞaðT þ sþ t0Þ2 ð63Þ
and
Dðs; t0Þ � ðT þ sþ t0Þa½a2s2 þ 2ðT þ sþ t0Þ2 � asð2T þ 3sþ 2t0Þ�: ð64Þ
In the time asymptotic limit we obtain
dðs; t0Þ ffi
3
2

for T � s� t0;

1 for T � t0 � s:



ð65Þ
So, for the infinitely aged and the brand new condition we have d ¼ 3
2

and d = 1, respectively.
We have to explain why the SDA is insensitive to the infinitely aged scaling, which is, by the way different from the

infinitely aged scaling of Eq. (17) emerging from the average over the systems of a genuine Gibbs ensemble (see Section
5). It is evident that the statistical weight of condition (b) is much smaller than that of condition (a), thereby explaining
why the statistical analysis of Section 2 does not reveal it. Let us see why it is so. We have to define the statistical weight
W ðt0Þ. We use the following formula
W ðt0Þ ¼ NWðt0Þ; ð66Þ
where
Wðt0Þ ¼
Z þ1

t0
wðsÞ ds ¼ T

t0 þ T

� �l�1

: ð67Þ
The explanation of this choice is as follows. As we increase the distance between the left border of the mobile window
and a given event, the probability of meeting a new event increases. When a new event is found, we reset to zero the
window’s age. Thus, the statistical weight of a given distance t 0 from an earlier event is proportional to the survival
probability Wðt0Þ. In the case l < 2 this weight cannot be normalized. However, we have to take into account that
the sequence under study is finite. Therefore the age t 0 cannot exceed a maximum value smax. This makes it possible
for us to set
Z smax

0

W ðt0Þ dt0 ¼ 1; ð68Þ
which defines the normalization constant N and allows us to write
W ðt0Þ ¼ ð2� lÞ
½ðT þ smaxÞ2�l � T 2�l�


 1

½T þ t0�l�1
: ð69Þ
In Figs. 8 and 9 we illustrate the form of the statistical weight W ðt0Þ. The weight PðdÞ of the aging dependent scaling
dðt0Þ is defined by means of
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Numerical statistical weight ðW ½t0�Þ for a single sequence length Lmax ’ 4:3� 106 and maximum event time smax ’ 9:92� 105.
8; Dt0 ¼ 1; T ¼ 1.
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Fig. 9. Similar as in Fig. 8. The solid line is analytical, Eq. (69), and the dots are numerical W ðt0Þ weight. Both in log–log scale. The
numerical constants are: l ¼ 1:8; T ¼ 1; Dt0 ¼ 1, the total sequence length � Lmax ’ 4:3� 106; smax ’ 9:92� 105.
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PðdÞ dd ¼ W ðt0Þ dt0: ð70Þ
To do the numerical calculation, we operate as follows. We consider a sequence of length L < Lmax. The statistical
weight of d is determined by
P½d; L� ¼ W ½t0ðd; LÞ� ot0ðd; LÞ
od

				
				: ð71Þ
The function t0ðd; LÞ is obtained in the following way. We move t 0 from +0 to smax so as to find dðL; 0Þ and dðL; smaxÞ for
a fixed L. Due to the monotonic dependence of dðL; t0Þ on t 0 we find
t0 ¼ t0ðd; LÞ; ð72Þ
which is well defined function of d for d running from dðL; 0Þ to dðL; smaxÞ. The function of Eq. (72) is obtained numer-
ically with a very good accuracy. Finally, we plot the function Pðd; LÞ for a given L and 0 6 t0 6 smax, which is shown in
Fig. 10. In Fig. 10 the left and right peaks correspond to t0 � L and t0 � L, or to the so called brand new and largely
aged scaling, respectively. Then we evaluate the average of d defined by
hdiL �
Z smax

0

W ðt0ÞdðL; t0Þ dt0: ð73Þ
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. The numerical plot of the weight of the scale Eq. (71), for a given window length � L ¼ 103; 0 6 t0 6 104; l ¼ 1:8; T ¼ 1,
ce length � Lmax ¼ 105.
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Fig. 11. The plot of average scale vs. window length, hdiL � hdðLÞi. That is it is plotted the numerically integrated form of Eq. (73) for
the following constants: l ¼ 1:8; smax ¼ 102; T ¼ 1; Lmax ¼ 105 (total length of the sequence).
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Note that the mobile windows must have size very small compared to the size of the whole sequence length(Lmax) so as
to produce enough statistics from a finite sequence. Fig. 11 shows that the the mean value of d drops very quickly to the
ballistic prescription d = 1, thereby explaining why the SDA is insensitive to the aging effects.
7. Concluding remarks

The main results of this paper can be summarized as follows. The non-ergodic condition l < 2 generates aging, and
consequently an aging dependent scaling. If we adopt the Gibbs perspective the dependence of scaling on aging can be
established adopting rigorous prescriptions of the literature on renewal processes. The SDA, DEA and DFA are meth-
ods developed to analyze single sequences, thereby making it necessary to use a time average rather than an ensemble
average. In the case l > 2 this is not a problem, insofar as the ergodic condition is fulfilled. Previous work [4,15] showed
that, while SDA and DFA estimate the scaling of the diffusion pdf variance, DEA directly estimates the scaling of the
pdf (Eq. 3), which in the Lévy case is different from the variance scaling.

In the case l < 2, the correspondence between the two averaging ways is not guaranteed anymore. The theoret-
ical investigation done in Section 5 shows that two scalings are admitted, the aged scaling, d ¼ ð4� lÞ=2, and the
brand new scaling d = 1. The emergence of d > 1 is therefore not a numerical artifact, and is not a violation of the
physical constraint of keeping d 6 1, either. The analysis of Section 5 although based on the second moment shows
that this scaling has a clear physical meaning and corresponds to the aged condition. This result offers an explana-
tion of the DFA scaling d ¼ ð4� lÞ=2, not affected by the transition from the ergodic to the non-ergodic regime, as
caused by the predominance of the aged condition. We argue that this is an effect of the detrending process built in
the DFA analysis, and urge for further investigations to support this point. As far as the SDA is concerned, the
analysis done in Section 6 explains the SDA scaling d = 1 by showing that SDA estimate is based on windows
which are mostly in the brand new condition, causing the influence of the aged condition to be marginal. The
DEA probably tends asymptotically to the same scaling as the DFA. If it does, it is however remarkable that
the DFA keeps a connection with the aged condition, with extremely good accuracy, for the whole time observation
range. This result offers a physical interpretation of the DFA scaling exponent estimated from non-ergodic time ser-
ies, giving a theoretical support to many interdisciplinary investigations that used this method in the non-ergodic
regime [10–12].
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